miR-135b Plays a Neuroprotective Role by Targeting GSK3β in MPP+-Intoxicated SH-SY5Y Cells

نویسندگان

  • Jianlei Zhang
  • Wei Liu
  • Yabo Wang
  • Shengnan Zhao
  • Na Chang
چکیده

miR-135a-5p was reported to play a crucial role in the protective effects of hydrogen sulfide against Parkinson's disease (PD) by targeting rho-associated protein kinase 2 (ROCK2). However, the role of another member of miR-135 family (miR-135b) and the underlying mechanism in PD are still unclear. qRT-PCR and western blot showed that miR-135 was downregulated and glycogen synthase kinase 3β (GSK3β) was upregulated at mRNA and protein levels in MPP+-intoxicated SH-SY5Y cells in a dose- and time-dependent manner. MTT, TUNEL, and ELISA assays revealed that miR-135b overexpression significantly promoted cell proliferation and inhibited apoptosis and production of TNF-α and IL-1β in SH-SY5Y cells in the presence of MPP+. Luciferase reporter assay demonstrated that GSK3β was a direct target of miR-135b. Moreover, sodium nitroprusside (SNP), a GSK3β activator, dramatically reversed the effects of miR-135b upregulation on cell proliferation, apoptosis, and inflammatory cytokine production in MPP+-intoxicated SH-SY5Y cells. Taken together, miR-135b exerts a protective role via promotion of proliferation and suppression of apoptosis and neuroinflammation by targeting GSK3β in MPP+-intoxicated SH-SY5Y cells, providing a potential therapeutic target for the treatment of PD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-135b Contributes to the Radioresistance by Targeting GSK3β in Human Glioblastoma Multiforme Cells

Radioresistance remains a major challenge in the treatment of glioblastoma multiforme (GBM). Recent data strongly suggests the important role of miRNAs in cancer progression and therapeutic response. Here, we have established a radioresistant human GBM cell line U87R derived from parental U87 and found miR-135b expression was upregulated in U87R cells. miR-135b knockdown reversed radioresistanc...

متن کامل

Alpha-synuclein knockdown attenuates MPP+ induced mitochondrial dysfunction of SH-SY5Y cells.

Alpha-synuclein is one of the main constituents of Lewy bodies and plays an important role in the pathology of Parkinson's disease. Mutation or overexpression of alpha-synuclein causes Parkinson's disease, and downregulation of alpha-synuclein resists MPP(+)-induced cell death, but the mechanism remains elusive. In this study, we attempted to explore the effect of alpha-synuclein knockdown on m...

متن کامل

Salidroside Protects against MPP+-Induced Neuronal Injury through DJ-1-Nrf2 Antioxidant Pathway

Parkinson's disease (PD) is the second most common neurodegenerative disorder. We have found that salidroside (Sal) exhibited neuroprotective effects against MPP+ toxicity. However, the molecular mechanism is not fully understood. In this study, we found that Sal significantly prevented MPP+-induced decrease of mRNA and protein expression of Nrf2, GCLc, SOD1, and SOD2 in SH-SY5Y cells. Moreover...

متن کامل

Protective effects and mechanisms of Ndfipl on SH-SY5Y cell apoptosis in an in vitro Parkinson's disease model.

The aim of the current study was to examine the protective effects and mechanisms of Ndfipl on neurocytes in an experimental in vitro Parkinson's disease model induced by MPP+. The cell model was developed with dominant negative expression and suppressed expression of Ndfipl by means of transient transfection of Ndfipl-dominant negative and -inhibitory vectors. In total, four different Ndfipl c...

متن کامل

Neuroprotective effects of Paeonia Lactiflora extract against cell death of dopaminergic SH-SY5Y cells is mediated by epigenetic modulation

BACKGROUND The Paeonia lactiflora extract (PLE) has been reported to have neuroprotective effect against neurodegeneration that are induced by cellular stress such as oxidative stress. Its underlying mechanisms, however, remain unclear. In latest decades, emerging evidence has suggested that epigenetic mechanisms play a key role in gene regulation in response to the cellular stress. We investig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017